The Five Trolls under the Bridge: Principal Component Analysis with Asynchronous and Noisy High Frequency Data

نویسندگان

  • Dachuan Chen
  • Per A. Mykland
  • Lan Zhang
چکیده

We develop a principal component analysis (PCA) for high frequency data. As in Northern fairly tales, there are trolls waiting for the explorer. The first three trolls are market microstructure noise, asynchronous sampling times, and edge effects in estimators. To get around these, a robust estimator of the spot covariance matrix is developed based on the Smoothed TSRV (Mykland et al. (2017)). The fourth troll is how to pass from estimated time-varying covariance matrix to PCA. Under finite dimensionality, we develop this methodology through the estimation of realized spectral functions. Rates of convergence and central limit theory, as well as an estimator of standard error, are established. The fifth troll is high dimension on top of high frequency, where we also develop PCA. With the help of a new identity concerning the spot principal orthogonal complement, the high-dimensional rates of convergence have been studied after eliminating several strong assumptions in classical PCA. As an application, we show that our first principal component (PC) closely matches but potentially outperforms the S&P 100 market index, while three of the next four PCs are cointegrated with two of the Fama-French non-market factors. From a statistical standpoint, the close match between the first PC and the market index also corroborates this PCA procedure and the underlying S-TSRV matrix, in the sense of Karl Popper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier

This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low freq...

متن کامل

Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...

متن کامل

Output-only Modal Analysis of a Beam Via Frequency Domain Decomposition Method Using Noisy Data

The output data from a structure is the building block for output-only modal analysis. The structure response in the output data, however, is usually contaminated with noise. Naturally, the success of output-only methods in determining the modal parameters of a structure depends on noise level. In this paper, the possibility and accuracy of identifying the modal parameters of a simply supported...

متن کامل

Identification of mineralization features and deep geochemical anomalies using a new FT-PCA approach

The analysis of geochemical data in frequency domain, as indicated in this research study, can provide new exploratory informationthat may not be exposed in spatial domain. To identify deep geochemical anomalies, sulfide zone and geochemical noises in Dalli Cu–Au porphyry deposit, a new approach based on coupling Fourier transform (FT) and principal component analysis (PCA) has beenused. The re...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018